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Abstract

Recent research in the area of image inpainting has yielded
promising results. However, there is still a lack of inpaint-
ing algorithms for artistic face images due to the lack of
paired training data. To solve this problem, we propose a
transformer-based artistic image inpainting algorithm. Our
framework consists of two modules: 1) Style Transfer. We
use the style transfer algorithm to generate artistic face im-
ages. 2) Image Inpainting. The generated images are then
masked to train our image inpainting model, which allows
us to obtain high-resolution images. Instead of using a tradi-
tional convolutional neural network (CNN), we use a trans-
former model because it focuses more on global features,
which is important to ensure a consistent global style in the
output of the image inpainting algorithm. Also, we redesign a
new loss function by observing the completion results of the
images, and our ablation study shows that our loss function
has a better performance for the completion around the eyes.
With a qualitative and quantitative evaluation of our method,
we show that the proposed method works well for painting
artistic face images.

1 Introduction
As an important branch in the field of computer vision, im-
age inpainting algorithms have been studied by scholars in
recent years and have become a hot issue. In our daily life,
we often encounter the situation of partial loss of image data.
To solve this problem, image repair comes into our view. In
short, the goal of image inpainting is to infer a reasonable
structure and color of the missing parts based on the exist-
ing parts of the image we need to repair. It has a wide range
of applications, from object removal (Barnes et al. 2009) and
image manipulation (Jo and Park 2019) to photo and artistic
image restoration (Wan et al. 2020). In this work, we will
focus only on the repair of artistic images.

In recent years, deep learning-based image repair meth-
ods have become mainstream in this field and are gradu-
ally replacing patch-based approaches, such as PatchMatch
(Barnes et al. 2009). As a pioneer, ContextEncoder (Pathak
et al. 2016) firstly uses a convolutional neural network to
restore images. Immediately after, (Iizuka, Simo-Serra, and
Ishikawa 2017) introduces global and local environment dis-
criminators to train so that the generated image is indistin-
guishable from the real image. Since the convolution ker-
nel is not sensitive to the information difference between

the valid and invalid regions, Partial Convolution (Liu et al.
2018) is proposed to improve the operational efficiency
by adding the mask to participate in the convolution op-
eration. For the repair of contextual semantic information,
(Yu et al. 2018a) incorporates the attention mechanism, and
(Zheng et al. 2022) treats image completion as a direc-
tionless sequence-to-sequence prediction task, and deploy a
transformer to directly capture long-range dependence in the
encoder. AOT-GAN (Zeng et al. 2022) compliments high-
resolution images for the problem of fine-grained texture
synthesis of large missing regions. These previous models
can achieve good results in terms of image realism, contex-
tual information, image resolution, etc. However, all of them
do not perform well in artistic face image inpainting. That is
because, unlike ordinary photographs and landscapes, artis-
tic images have more distinctive brushstrokes and textures
that are not found inside the training set(FFHQ (Karras,
Laine, and Aila 2019), CelebA (Karras et al. 2017), etc.)
commonly used in image inpainting algorithms. In real life,
there are no open-source large-scale artistic face images,
which limits the application of image inpainting methods in
artistic face image repair.

The existing style transfer algorithm can transfer special
strokes and textures to real face images to obtain artistic
face images. Style transfer aims to re-render features such
as textures and colors of one image to another image and
ensure the structure of the latter remains unchanged. The
current style transfer algorithms are mainly divided into
optimization-based approaches and feedforward-based ap-
proaches. As optimization-based methods tend to produce
higher-quality images, we leverage an optimization-based
style transfer (Kolkin, Salavon, and Shakhnarovich 2019)
algorithm to build a high-quality artistic face image dataset
base on FFHQ (Karras, Laine, and Aila 2019) which can be
used to train our image completion model.

In addition to a high-quality dataset, an appropriate net-
work model is also essential for repairing artistic face im-
ages. Recent work ICT (Wan et al. 2021) has achieved an
excellent result in the image completion task using Trans-
former (Vaswani et al. 2017). In particular, the convolution
operation of CNN has trouble modeling the global structure
of the image and has a unique output result. Transformer,
however, understands the global structure through the at-
tention mechanism and supports pluralistic output. ICT in-



tegrates the advantages of CNN and Transformer, utilizing
the global structure understanding capability and pluralis-
tic support of Transformer and the local texture refinement
of CNN to accomplish high-fidelity pluralistic image com-
pletion, showing a powerful performance. Thus, we utilize
our established dataset of artistic face images to train ICT,
thereby filling the gap in the artistic face image completion
task. To get better results, we attempt to replace l1 loss with
smooth l1 loss and add a TV loss to make the results contin-
uous.

To summarize, the key contributions of this paper are: 1)
A transformer-based artistic image inpainting algorithm; 2)
A high-quality artistic image dataset that can be used for
training; 3) Two new loss functions were tried: smooth l1
loss, TV loss.

2 Related Work
2.1 Style Transfer
Style transfer is the transformation of a content image into
another artistic style. It has been developed for more than 20
years. Early style transfer did not use CNN. Image Analo-
gies (Hertzmann et al. 2001) learned the mapping between
source images and style images through supervised learn-
ing. Others combine image processing-related filters to ren-
der content images (Tomasi and Manduchi 1998), the algo-
rithms are usually simple but limited in the number of styles.
Since Neural Style Transfer (Gatys, Ecker, and Bethge 2016)
was proposed in 2016, style transfer technology has under-
gone tremendous changes. More and more people use deep
learning technology for style transfer. This model uses CNN
to extract features from images and build content, and match
features between content and style. In 2017, both Microsoft
Research and Google solved the limitation that the model
can only train one style for one image at a time, they imple-
mented a network to train N styles (Dumoulin, Shlens, and
Kudlur 2016; Chen et al. 2017).

2.2 Image Inpainting
Image inpainting aims to fill in missing areas of images,
which has been a long-standing challenge in computer vi-
sion areas. As early as 20 years ago, Efros and Free-
man (Efros and Freeman 2001) proposed an image quilt-
ing method, which synthesizes a new image by stitching to-
gether small patches of existing images. Then, PatchMatch
(Barnes et al. 2009) finds approximate patches in the image
and paste them into the missing area. These traditional im-
age inpainting methods require the inclusion of structures
or patches in the input image that are similar to the missing
parts, which is impractical in many cases. In recent years,
thanks to the excellent performance of CNN and GAN, so-
lutions based on deep learning have begun to dominate the
field of image inpainting. Pathak et al. (Pathak et al. 2016)
propose a feature learning algorithm driven by context-based
pixel prediction, which is capable of giving reasonable re-
sults for semantic hole-filling. Yu et al. (Yu et al. 2018b)
design a new contextual attention module to capture the cor-
relations at distant spatial locations. Li et al. Liu et al. (Yang,

Qi, and Shi 2020) propose a mutual encoder-decoder net-
work that can simultaneously learn features structure and
texture corresponding to different layers. Wan et al. (Wan
et al. 2021) propose to combine the advantages of transform-
ers and CNN to improve the image fidelity and the diversity
of results.

2.3 Transformer
Transformer (Vaswani et al. 2017) was first utilized for ma-
chine translation, and it has shown outstanding performance
in natural language processing (NLP) through the atten-
tion mechanism. With Transformer reaching the mainstream
model in NLP, more and more work (Carion et al. 2020;
Dosovitskiy et al. 2020; Bao, Dong, and Wei 2021; Liu et al.
2021) is trying to apply Transformer to the field of computer
vision. For example, DERT (Carion et al. 2020) introduces
Transformer to do the target detection task. ViT (Dosovit-
skiy et al. 2020) employs the standard Transformer and pro-
cesses images into a form similar to token sequences in NLP
to solve the image recognition problem. BEiT (Bao, Dong,
and Wei 2021) utilizes masked image patches to pre-train
the visual transformer. Swin Transformer (Liu et al. 2021)
employs a hierarchical structure to extract visual features at
various levels, making it more appropriate for tasks such as
segmentation and detection. In the area of image comple-
tion, ICT (Wan et al. 2021) achieves diverse and high-fidelity
results by Transformer to recover the structure and coarse
texture of missing parts, which solves the problem of the
weak performance of CNN in understanding global structure
or supporting diverse completion. In our work, we similarly
apply Transformer to accomplish the completion of art-style
face images, which was not addressed in previous work.

3 Method
In order to make up for the shortcomings of the current im-
age inpainting models that cannot repair artistic images, we
propose a transformer-based artistic image inpainting algo-
rithm. As shown in Figure 1, our method consists of two
stages. First, we exploit the existing style transfer method
(Kolkin, Salavon, and Shakhnarovich 2019) to stylize the
face images (Karras, Laine, and Aila 2019) into artistic im-
ages and use the stylized results as the dataset for our image
repair phase. Then, we utilize this dataset to retrain an image
repair model which is capable of repairing artistic images.
The details of these two stages are described in section 3.1
and section 3.2, respectively.

3.1 Stylized Datasets
In the style migration phase, we need two input images, one
is the content image IC and the other is the style image IS .
We follow (Kolkin, Salavon, and Shakhnarovich 2019) and
use the gradient descent variant RMSprop to minimize the
loss function of the style transfer part, which is defined as:

Lstage1(X, IC , IS) =
αlC + lm + lr +

1
α lp

2 + α+ 1
α

(1)

where X is the stylized image, lC is the content loss and
lm + lr +

1
α lp is the style term. In particular, the hyperpa-

rameter α represents the weight of content loss.
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Figure 1: Pipeline Overview. Our framework consists of two modules: 1) Style Transfer. We use the style transfer algorithm
to generate artistic face images. 2) Image Inpainting. This module consists of two networks, the top one is a bi-directional
transformer, which produces the probability distribution of missing regions, and the bottom one is CNN, which upsamples the
appearance prior and then generates the high-resolution images. E: Encoder, D: Decoder, R: Residual block, P: the probability
distribution of missing regions.

Specifically, inspired by self-similarity, lC is defined as:

LC(X, IC) =
1

n

∑
i,j

∣∣∣∣∣ DX
i,j∑

i D
X
i,j

−
DC

i,j∑
j D

IC
i,j

∣∣∣∣∣ (2)

where DX
i,j is the pairwise cosine distance matrix of all hy-

percolumn feature vectors extracted from X and the defini-
tion of DC

i,j is the same.
In the style term, lr is the Relaxed Earth Mover’s Distance

between X and IS . And because lr only considers the spatial
relationship between vectors and ignores the impression of
vector length, it is important to introduce lm to reduce the
artifacts caused by lr. lp, on the other hand, ensures that the
stylized image and the stylized image are consistent in color.

What’s more, unlike the general style transfer algorithm,
(Kolkin, Salavon, and Shakhnarovich 2019) uses hyper-
columns to extract and characterize the features of the im-
age. We use the set of feature maps extracted from the 10
sub-layers of the VGG16 network, which has a total of 2179
feature maps. For an input image, we randomly select 1024
sampling points and use a bilinear interpolation algorithm to
approximate the positions corresponding to these 1024 sam-
pling points on the 2179 feature maps. Then, we arrange the
points at each position into a vector of length 2179 as the hy-
percolumn of the corresponding sampled points. In the ini-
tialization stage, to speed up the convergence, we initialize
the output image with the Laplace Pyramid of IC instead of
directly using IC . Using the extracted features, we optimize
the output image at increasing resolutions to finally obtain
X .

We utilized several stylized images to stylize real face im-

ages, but most of them did not give good results. To ensure
the quality of the training set, we only selected the results
with the best results, as shown in Figure 2. Finally, we ob-
tained a total of 900 artistic face images and divided the
training set, validation set, and test set according to the ratio
of 8:1:1.

Figure 2: The first column is the reference style image. And
in the second to fourth columns, the first row is the content
image and the second row is the stylized artistic face image.

3.2 Image Inpainting
In the image inpainting phase, we follow ICT (Wan et al.
2021) and use the combination of Transformer and convolu-
tion to accomplish image inpainting in order to overcome the
problems that convolution does not understand global infor-
mation well and does not support diverse outputs. Therefore,



our image inpainting is in two stages, appearance prior re-
construction and low-resolution upsampling. Given an input
image Im ∈ RH×W×3 with missing regions, we first uti-
lize Transformer to sample a low-resolution inpainting re-
sult, called the appearance prior X . Subsequently, the up-
sampling CNN model is leveraged to obtain high-fidelity in-
painting results Ipred ∈ RH×W×3 guided by the appearance
prior and the input image. The details of these two stages
will be described in sections 3.2.1 and 3.2.2, respectively.
The overall pipeline can be found in Figure 1.

3.2.1 Appearance Prior Reconstruction
Recently, Transformer has demonstrated powerful capabil-
ity in modeling long-term relationships and generating di-
verse results, but its computational complexity is quadratic
in the input length. So we employ Transformer only to re-
cover complex coherent structures and some coarse textures,
called appearance prior reconstruction, which is represented
by a low-resolution image. Similarly, the RGB space of pix-
els is also large and we followed ICT for a discretized repre-
sentation, using an extra visual vocabulary. To this end, the
missing regions are expressed in terms of a special learn-
able token [MASK] similar to the Masking Language Model
(MLM) in BERT (Devlin et al. 2018).

For discrete sequences, we project them to a d-
dimensional feature vector, adding the learnable positional
embedding, with the final E ∈ RL×d as the input to the
Transformer. For the network architecture, we only use the
Transformer’s decoder, which consists mainly of 30 self-
attention layers. To capture the full available information,
we utilize bi-directional attention to make each token attend
to the full positions, thus achieving consistency between
the generated content and the regions that are unmasked.
The output of the final layer of the Transformer is further
projected as a pixel-by-pixel distribution with a visual vo-
cabulary using a fully connected layer and softmax. The
MLM combined with bidirectional attention ensures that the
Transformer model is capable of capturing the entire contex-
tual information to predict the probability distribution of the
missing regions.

Therefore, we take advantage of the powerful represen-
tation capabilities of the Transformer to reconstruct the ap-
pearance prior which contains global structure and coarse
texture. Moreover, due to the small amount of data in our
dataset, we initialize the network with the same weights as
ICT pre-trained on the FFHQ dataset in order to better uti-
lize the semantic information of faces, and later fine-tune it
on our data. This way, we can use our small amount of data
to get better results more quickly. After obtaining the distri-
bution generated by the Transformer, we use Gibbs sampling
to iteratively sample tokens at different locations.

3.2.2 Low-resolution Upsampling
After obtaining the low-dimensional appearance prior, we
reshape X as It ∈ R

√
L×

√
L×3 for the subsequent process-

ing. Then, we need to convert the It to the original resolution
H ×W × 3 and ensure the boundary consistency of the in-
painting image. After obtaining the low-dimensional appear-

ance prior, we reshape X as It for the subsequent processing.
Then, we need to convert the It to the original resolution
HxWx3 and ensure the boundary consistency of the inpaint-
ing image. CNNs have demonstrated the ability to learn rich
texture patterns. Therefore, we employ an extra upsampling
network that is capable of rendering high-fidelity details us-
ing the appearance prior and the input masked image. In this
way, we can utilize the CNN network to enhance the local
texture details with a coarse prior to obtain the final inpaint-
ing image.

Unlike ICT, we optimize this guided upsampling network
by minimizing the smooth L1 loss between the predicted im-
age Ipred and the corresponding ground truth I . This makes
the training more robust and this loss can be expressed as:

LsmoothL1 =

{
|Ipred − I| − 0.5, |Ipred − I| > 1
0.5 |Ipred − I|2 , |Ipred − I| < 1

(3)

Furthermore, in order to ensure the consistency of the
boundaries of the inpainting image, we additionally employ
a Total Variation loss (TV loss) for minimizing the differ-
ences of adjacent pixels and ensuring the smoothness of the
complete image, denoted as:

LTV =
1

W ×H

W∑
i=1

H∑
j=1

|Ipred,i+1,j − Ipred,i,j |

|Ipred,i,j+1 − Ipred,i,j |

(4)

Similar to ICT, to generate more realistic details, we simi-
larly employ adversarial loss in the training process, denoted
as follows:

Ladv = E[log(1−D(Ipred))] + E[logD(I)] (5)

where D is the discriminator. We simultaneously train the
upsampling network and the discriminator.

The final optimization was solved by the followings.

Lupsample = α1LsmoothL1 + α2Ladv + α3LTV (6)

The loss weights were set to α1 = 1.0, α2 = 0.1, and α3 =
1.0 in all experiments.

4 Experiments
4.1 Implementation Details
The image inpainting experiments were conducted on our
self-made artistic face images dataset. The production pro-
cess of the dataset and the split mode of training, testing, and
validation are as mentioned in section 3.1. Randomly gen-
erated masks are used for training and evaluation, and the
resolution of all the images and masks is 512 × 512 pixels.

The implementation of the model is based on PyTorch.
The transformer is optimized with AdamW (Loshchilov and
Hutter 2017) optimizer, where β1 = 0.9 and β2 = 0.95.
We first warm up the learning rate from 0 to 3e-4 for initial
training, then decay it to 0 in the rest epochs. The guided
upsampling network is trained with Adam (Kingma and Ba
2014) optimizer with the learning rate of 1e-4, β1 = 0.0,
and β2 = 0.9. It takes about 24 hours to train our model on
an RTX 3090 GPU.
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Figure 3: Qualitative Comparison with Deepfill v2, PICNet and ICT methods.

4.2 Method Comparison
4.2.1 Quantitative Comparison
We numerically compare our method with other baselines in
Table 1. We use the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) to quantify the similarity
of the completed image to the ground truth. We found that
PICNet pretrain achieved the best results on both SSIM and
PSNR, but we can find in Figure 3 that the effect of PICNet
pretrain on image perception is not good.

Method SSIM PSNR
Deepfill v2 0.7084 19.1971
PICNet pretrain 0.7386 20.0410
PICNet finetune 0.7295 20.0401
ICT pretrain 0.7267 19.4598
ICT finetune 0.7138 19.8218
ICT + Smooth L1 Loss 0.7087 19.5278
ICT + TV Loss 0.7129 19.9055
Ours 0.7129 19.8225

Table 1: Quantitative results on 90 images. Ours: ICT with
Smooth L1 Loss and TV Loss

4.2.2 Qualitative Comparison
Although PICNet pretrain achieves the highest score on
quantitative metrics, its real-world style image infilling does
not meet the requirements of stylized completion. ICT pre-
train also has similar problems, but the effect is relatively
good. Ours works better on eyes than other methods.

In other methods, it is difficult to distinguish the sclera
and pupil of the eye when the eye is completed, and Ours
can better distinguish the sclera and pupil.

4.3 Ablation Study
We perform all ablation studies for the proposed im-
age complementation algorithm to investigate the ef-
ficiency of the network designs. Our network uti-

lizes smooth L1 loss instead of L1 loss in the upsam-
pling network of ICT and also adds TV loss for optimiza-
tion. The qualitative and quantitative results are presented in
Figure 3 and Table 1 respectively.

First, it can be observed that ICT pretrain method has
higher SSIM and lower PSNR than our method. And in the
quantitative result, ICT pretrain produces the basic compo-
sitions of missing parts without the texture features of artis-
tic images, which are more similar to realistic photographs.
Then, replacing the L1 loss with smooth L1 loss in ICT
shows decreases in both quantitative metrics. Next, ICT with
TV loss shows a slight decrease of 1.26% in SSIM and a
greater improvement of 4.22% in PSNR, which verifies the
advantage of using TV loss. As shown in Figure 3, there is
no significant difference between the methods trained in the
artistic dataset, and each method inpaints the images well.

5 Conclusion and Discussion

In this paper, we combine a style transfer algorithm with an
image inpainting algorithm, which yields a new framework
capable of performing the artistic face image inpainting task.
First, we infer the face images with style images by style mi-
gration algorithm to generate stylized datasets, and then use
the datasets as the training set of image inpainting algorithm
to train a model that can patch artistic face images. For the
image inpainting algorithm, we redesign the network loss
function based on ICT, replace L1 loss using smooth L1 loss
on top of the image patching algorithm, and further add TV
loss. Although the metrics of our method are not the highest
in quantitative experiments, our results are visually better in
terms of qualitative results. What’s more, we conjecture that
the lack of significant improvement in our results is due to
the fact that the transformer model is too large and our train-
ing set is too small (720 images in total), which leads to a
relatively serious overfitting of our model. In the future, we
may be able to obtain better results by increasing the dataset.
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